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ABSTRACT
Subspace clustering aims to cluster high dimensional data lying in

a union of low-dimensional subspaces. It has shown good results

on the task of image clustering but text clustering, using document-

term matrices, proved more impervious to advances based on this

approach. We hypothesize that this is because, compared to image

data, text data is generally higher dimensional and sparser. This

renders subspace clustering impractical in such a context. Here, we

leverage subspace clustering for text by addressing these issues.

We first extend the concept of subspace clustering to co-clustering,

which has been extensively used on document-term matrices due

to the resulting interplay between the document and term represen-

tations. We then address the sparsity problem through a two-way

graph convolution, which promotes the grouping effect that has

been credited for the effectiveness of some subspace clustering

models. The proposed formulation results in an algorithm that is

efficient both in terms of computational and spatial complexity. We

show the competitiveness of our model w.r.t the state-of-the-art on
document-term attributed graph datasets in terms of performance

and efficiency.
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1 INTRODUCTION AND BACKGROUND
Subspace clustering [18] is an unsupervised problem where one

wishes to group points according to the subspaces in which they

lie. There have been a variety of approaches to solve the problem,

a lot of which consider the self-expressive formulation where it is

assumed that each element can be written as a linear combination of
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the elements in the that subspace. Typically, the generic formulation

is given as

min

R
∥ X − RX ∥2 + Ω (R) s.t. R ∈ R (1)

where X ∈ R𝑛×𝑑 is a matrix of 𝑑-dimensional data points, R ∈
R𝑛×𝑛 is called the self-representation matrix, Ω(R) serves as a
regularization term to induce desirable properties on R and avoid

trivial solutions (such as R = I), and R is the feasible region.

After finding an optimal solution R∗, an affinity matrix is gen-

erated based on the magnitudes of the entries of R∗, usually using

|R∗ +R∗⊤ |/2, and a partition of the points is then generated using a

graph clustering method e.g. the spectral clustering algorithm [23].

Subspace clustering methods based on the self-expressive prop-

erty [29] have been widely used to cluster image datasets due the

assumption that image datasets are often drawn from multiple

low-dimensional subspaces. One of the earlier approaches was the

least-square regression (LSR) subspace clustering [14] that lever-

ages a grouping effect based on the correlation of the data to do

the segmentation. More sophisticated approaches that make up

the state-of-the-art for proposed were later proposed such as the

Elastic-net Subspace Clustering (EnSC) [27] and the subspace clus-

tering through the orthogonal matching pursuit (SSC-OMP) [28].

However, despite text data also fulfilling this assumption, to the

best of our knowledge, no self-expressive subspace clustering ap-

proach specifically tailored to text has been proposed. This can

perhaps be explained by the fact that document-term datasets are

usually much larger and sparser than image datasets and thus each

individual data point could potentially lie in a unique subspace.

In this paper we propose a subspace clustering model tailored

for document-term matrices through the concept of co-clustering

i.e. using the interplay between rows and columns, or in the context

of text, the interplay between documents and terms to generate a

segmentation for both of them. We also propose a way to overcome

the possible problem of each document/term lying in a unique

subspace through using a two-way graph convolution that consists

of a weighted Laplacian smoothing preprocessing step inspired by

the simple graph convolutional network [5, 12, 25].

2 PROPOSED METHOD
Notation. Matrices are denoted with boldface uppercase and

vectors with boldface lowercase letters. Given a matrix X, its 𝑖-th

row is denoted by x𝑖 and its 𝑗-th column by x′
𝑗
. I𝑛 is the identity

matrix of size 𝑛. The Frobenius norm is denoted by ∥ .∥. 𝑘 and 𝑔

denote the number of row and column clusters. Function [U,Σ,V] =
SVD(X) gives the singular value decomposition of matrix X where

U and V are the left and right singular vectors and Σ is the diagonal

matrix containing the singular values, sorted in decreasing order.

https://doi.org/10.1145/3511808.3557706
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2.1 Self-Expressive Subspace Co-clustering
The advantage of co-clustering [8] is that it makes use of the inher-

ent duality between the rows and columns of data tables which can

lead to improvement in partitioning along both dimensions. For

example, in the case of the document term matrices [1, 2, 9, 17, 19],

co-clustering incorporates term space information to do the docu-

ment partitioning and vice-versa. Motivated by this observation,

given a document-term matrix X ∈ R𝑛×𝑑+ , we formulate the sub-

space co-clustering problem as

min

R,C
∥ X − RXC ∥2 + Ω(R,C) s.t. R ∈ R, C ∈ C

(2)

where R ∈ R𝑛×𝑛 and C ∈ R𝑑×𝑑 are respectively the row and

column self-representation matrices, Ω(R,C) is the regularization
term where the regularization of R and C can either be independent

i.e. Ω(R,C) = ΩR (R) + ΩC (C) or dependant, R and C are the

feasible regions.

2.2 Promoting the Grouping Effect Through a
Two-way Graph Convolution

Some subspace clustering methods [11, 13, 14] ascribe the perfor-

mance of their clustering to the grouping effect.

Definition (Grouping Effect): Given a data matrix X, a self-

representation matrix R has a grouping effect if

∀𝑖 ≠ 𝑗, ∥x𝑖 − x𝑗 ∥2 → 0 =⇒ ∥r𝑖 − r𝑗 ∥2 → 0.

This could pose a problem in the case of text because of its high

dimensionality and sparsity as data points may not be sufficiently

"close" in the sense of the self-expressive property to be grouped

in a meaningful way. This means data points need some sort of

smoothing to help subspace clustering algorithms to find common

subspaces. We propose to solve this problem through a two-way

graph convolution. This requires two similarity matrices that will

act as graphs on the rows SR and columns SC. These matrices can

either be constructed through some similarity measure on the data

or be provided a priori, e.g. in the case of attributed graphs.

An intuition can be drawn from the fact that the rows and

columns of S𝑝RXS𝑞C, as propagation orders 𝑝, 𝑞 grow, are getting

smoother by being averaged up to their 𝑝-th and 𝑞-th neighbors re-

spectively akin to Laplacian smoothing. This operation thus makes

the rows and columns more and more similar. Trough the grouping

property this implies that the self-representation vectors should

also be getting more similar, leading to a more meaningful parti-

tioning.

The challenge is to choose suitable propagation orders since

large values can cause over-smoothing and make all data points

look similar. Our problem becomes

min

R,C

 S𝑝RXS𝑞C − R
(
S𝑝RXS𝑞C

)
C
2 + Ω(R,C) s.t. R ∈ R, C ∈ C.

(3)

In what follows, we will refer to the smoothed matrix S𝑝RXS𝑞C using

H since this operation can be considered as a sort of data prepro-

cessing step, independent from the clustering model. Note that the

complexity of this operation is in O(𝑝 ∥SR∥0 + 𝑞∥SC∥0) where ∥ .∥0
is the 0-norm that gives the number of non-zero entries of its input.

2.3 Subspace Co-clustering through LSR
We propose an initial variant based on the LSR subspace clustering

model where we define the regularization term as follows Ω(R,C) =
𝜆R∥R∥2 + 𝜆C∥C∥2 where 𝜆R and 𝜆C are parameters that regulate

the trade-off between the reconstruction term and the regularizer.

The formulation of the problem becomes

min

R,C
∥H − RHC∥2 + 𝜆R∥R∥2 + 𝜆C∥C∥2 . (4)

By fixing R and solving for C and inversely, a closed form solution

can be obtained for both matrices where we can explicitly see how

our model uses information from the columns for the row space

partitioning and vice-versa

R = HC⊤H⊤
(
HCC⊤H⊤ + 𝜆RI

)−1
C =

(
H⊤R⊤RH + 𝜆CI

)−1 H⊤R⊤H.
(5)

However, solving the problem requires an iterative process where

we alternatively fix one of R and C and update the other until

convergence. The overall computational complexity is O(𝑛3 + 𝑑3 +
𝑡𝑛𝑑2 + 𝑡𝑛2𝑑), where 𝑡 is the number of iterations, and the spatial

complexity is O(𝑛2 +𝑑2), which is prohibitive for a lot of real world

applications.

2.4 A More Efficient Formulation Through
Orthogonality Constraints

To address the issue of complexity we propose to introduce the

following constraints R = ZZ⊤ and C = WW⊤ where Z ∈ R𝑛×𝑘
and W ∈ R𝑑×𝑔 are semi-orthogonal i.e. Z⊤Z = I𝑘 and W⊤W = I𝑔 .
With these constraints the problem becomes simpler due to fact

that ∥Z∥2 = rank(Z) and ∥W∥2 = rank(W). The new formulation

of the problem is

min

Z,W
∥H − ZZ⊤HWW⊤∥2 s.t. Z⊤Z = I𝑘 , W⊤W = I𝑔 (6)

At first glance this problem also requires an alternating solving

scheme using two update rules that we obtain by fixing W and

solving for Z and vice versa

Z = [u′
1
, . . . , u′

𝑘
] s.t. [U,Σ,V] = SVD(HW)

W = [u′
1
, . . . , u′

𝑘
] s.t. [U,Σ,V] = SVD(H⊤Z).

(7)

This entails that 𝑔 = 𝑘 . The detailed pseudo-code for this method

is given in algorithm 1, its spatial complexity is the same as for

LSR but the computational complexity is in O(𝑛3 +𝑑3 + 𝑡𝑛𝑑 log(𝑘)),
which is faster. All in all, the approach still remains quite inefficient.

Efficient computation of Z∗ and W∗. The previous problem
can be efficiently solved using a single truncated SVD. This is a

consequence of the following proposition.

Proposition 1. The alternating process defined in system of (7)

converges to Z and W being the left and right truncated singular

vectors of H respectively.

This results in a more efficient algorithm since we circumvent the

iterative step. However, the interaction between rows and columns

implicitly remains since the resulting solution is also a solution to

the aforementioned alternating optimization problem where the

interaction is explicit.
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Algorithm 1: Naive SCC
Input :X data matrix, SR and SC row and column prop.

matrices, 𝑝 and 𝑞 row and column prop. orders, 𝑘

number of co-clusters

Output :R and C the row and column self-representation

matrices, 𝜋R and 𝜋C row and columns partitions

H← S𝑝RXS𝑞C;
W←W𝑖𝑛𝑖𝑡 ;

while not converged do
Z← [u′

1
, . . . , u′

𝑘
] s.t. [U, _, _] ← SVD(HW);

W← [u′
1
, . . . , u′

𝑘
] s.t. [U, _, _] ← SVD(H⊤Z);

end
R, C← ZZ⊤, WW⊤;
Generate 𝜋R, 𝜋C through spectral clustering on |R| and |C|;

Proof. Suppose, without loss of generality, that 𝑘 ≤ rank(H).
We have that 𝑘 = rank(Z) = rank(W) implying

rank
(
ZZ⊤HWW⊤

)
≤ 𝑘.

This means that we are looking for the best 𝑘-rank approximation.

Given [U,Σ,V] = SVD(H), by setting Z = U𝑘 = [u′
1
, . . . , u′

𝑘
] and

W = V𝑘 = [v′
1
, . . . , v′

𝑘
]. We have that

∥H − ZZ⊤HWW⊤∥2 = ∥H − U𝑘U⊤
𝑘

UΣV⊤V𝑘V⊤
𝑘
∥2

= ∥H − [U𝑘 , 0]Σ[V𝑘 , 0]⊤∥2

= ∥H − U𝑘Σ𝑘V⊤
𝑘
∥2

(8)

which according to the Eckart–Young–Mirsky theorem is the opti-

mal value of the rank-𝑘 approximation problem of H. □
From the previous result, we can show that our approach has an

approximate grouping effect

Proposition 2. Given matrix H, the solutions R and C display a

grouping effect on matrix H̃, the best rank-𝑘 approximation of H,

since z𝑖 = Σ−1
𝑘

W⊤ ˜h𝑖 and w𝑖 = Σ−1
𝑘

Z⊤ ˜h
′⊤
𝑖
.

Efficient Spectral Clustering from R∗ and C∗. The optimal co-

efficient matrix R∗ = Z∗Z∗⊤ is symmetric by construction, however

its entries are not necessarily nonnegative which implies having

to use element-wise absolute value to obtain a valid affinity ma-

trix. This would destroy all information we already have on the

decomposition of R∗ into Z∗Z∗⊤ since generally there is no relation

between the spectrum of a matrix and its spectrum after apply-

ing an entrywise function. We circumvent this problem by instead

considering affinity matrix KR = (𝑟𝑖 𝑗 + 1)2𝑖 𝑗 . We thus have that

KR = ⟨𝜑 (Z∗), 𝜑 (Z∗)⟩ where 𝜑 is a the feature map for the second

degree polynomial kernel KR applied on the row vectors of Z i.e.

𝜑 (z) = ⟨𝑧2
𝑘
, . . . , 𝑧2

1
,
√
2𝑧𝑘𝑧𝑘−1, . . . ,

√
2𝑧𝑘𝑧1,

√
2𝑧𝑘−1𝑧𝑘−2,

. . . ,
√
2𝑧𝑘−1𝑧1, . . . ,

√
2𝑧2𝑧1,

√
2𝑧𝑘 , . . . ,

√
2𝑧1, 1⟩

(9)

with 𝜑 : R𝑘 → R
(𝑘+2
2

)
. Any feature map for an entrywise nonneg-

ative kernel is a possible alternative. We chose the simplest exact

feature map possible here since the transformation does not result

in too much of a dimensionality increase for the inputs as 𝑘 << 𝑛,𝑑 .

Approximations can be used in order to work with otherwise infi-

nite dimensional feature map kernels e.g. the RBF kernel. We then

propose to perform the spectral clustering directly on the affinity

matrix instead of the Graph Laplacian as in [21]. Since the eigen-

vectors of KR are the same as the left singular vectors of 𝜑 (Z∗) the
process is much faster since 𝑘 << 𝑑 . To obtain a clustering from C∗,
the operations are the same. The overall computation complexity

is then in O
(
(𝑛𝑑 + 𝑛𝑘2 + 𝑑𝑘2) log(𝑘)

)
while the spatial one is in

O
(
𝑛𝑘2 + 𝑑𝑘2

)
.

3 EXPERIMENTS
3.1 Experimental Setup

Datasets. We use four attributed graph citation networks, which

are graphs characterized by an adjacency matrix A and a node

features matrix X. The summary statistics are available in table 2.

Table 2: Dataset statistics.

Dataset #Nodes #Edges #Features #Classes

ACM [24] 3025 9150593 1870 3

CiteSeer [22] 3327 4732 3703 6

PubMed [22] 19717 44338 500 3

Wiki [26] 2405 17981 4973 17

Comparative models. We compare our model to clustering and

co-clustering models that either use only the input node feature

matrixX or that use bothA andX i.e. attributed graph clustering/co-

clustering models.

• Vanilla clustering models. The 𝑘-means algorithm is our baseline.

• Subspace clustering models.We also use the aforementioned sub-

space clustering LSR, EnSC and SSC-OMP models.

• Attributed graph clustering models.We use GIC [16] where clus-

tering is done by maximizing the mutual information between

nodes contained in the same cluster, AGE [4] proposes a Laplacian

smoothing filter that acts as a low-pass filter applied in adaptive

learning scheme, S2GC [30] proposes a method for the aggregation

of K-hop neighborhoods that is a trade-off of low- and high-pass

filter bands, and GCC [7] which proposes a simultaneous repre-

sentation learning and clustering scheme for nodes.

• Vanilla co-clustering models.We compare the model to the spectral

co-clustering algorithm [6] and the DCC [20] which is based on a

regularized von Mises-Fisher mixture model.

• Attributed graph co-clustering Models. The only such model is

CFOND [10], a consensus factorization model that simultaneously

factorizes information from three aspects: network topology struc-

tures, instance-feature content relationships, and feature-feature

correlations.

Experimental settings. For our method, we use as our row

graph, the adjacency matrix provided in the datasets SR = A.

For the columns, we use SC =

(
max

{
log

(
C..

C𝑖 .C. 𝑗
𝑐𝑖 𝑗

)
, 0

})
𝑖 𝑗
where

C = X⊤X, which is the nonnegative pointwise mutual information

[3] matrix of the terms; Intuitively 𝑠C𝑖 𝑗 gives the semantic related-

ness of term 𝑖 and 𝑗 , the larger the value, the more these terms are

related. Both matrices are then added self-loops and normalized
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Table 1: Clustering performance on the datasets averaged over ten runs. The best results are highlighted in bold. Our model is
competitive with the state-of-the-art as it has the best results on most datasets while having small standard deviations.

Method Input ACM CiteSeer PubMed Wiki

Acc NMI ARI Acc NMI ARI Acc NMI ARI Acc NMI ARI

𝑘-means X 62.8±4.8 37.2±9.2 34.5±10.4 62.5±1.6 36.7±1.9 35.5±2.5 60.1±0.0 31.4±0.0 28.1±0.0 47.3±6.0 46.3±6.9 26.4±8.1

LSR X 80.3±0.0 47.0±0.0 51.9±0.0 21.1±0.0 0.2±0.1 0.0±0.0 OOM 21.1±3.3 9.0±5.9 2.6±2.0

EnSC X 79.5±0.0 46.8±0.0 50.3±0.0 55.6±0.0 14.8±0.0 14.6±0.0 55.6±0.0 14.8±0.0 14.7±0.0 45.5±2.0 45.7±1.7 28.8±1.3

SSC-OMP X 78.8±0.1 43.4±0.1 48.3±0.1 24.0±1.1 3.5±0.4 1.8±0.1 60.4±0.0 22.3±0.0 19.4±0.0 52.7±4.4 48.1±2.3 33.3±1.5

Spectral X 80.6±0.1 48.4±0.1 52.3±0.1 30.3±1.7 10.0±1.3 5.5±1.6 61.2±0.0 24.7±0.0 21.8±0.0 37.8±1.2 38.2±0.3 20.8±0.4

DCC X 40.5±3.3 7.8±5.1 2.1±2.2 35.1±3.8 11.5±2.4 8.9±2.9 54.3±3.6 16.5±2.9 13.4±4.1 48.3±3.6 47.5±2.6 30.6±3.0

GIC A,X 34.3±0.4 0.1±0.1 0.0±0.0 68.8±0.8 43.8±1.0 44.6±1.0 64.3±0.4 26.0± 0.5 23.6±0.5 46.5±1.4 48.2±0.5 30.2±1.4

S2GC A,X 40.5±3.4 1.7±1.2 1.8±1.3 68.1±0.3 42.3±0.2 43.5±0.3 70.8±0.0 32.5±0.0 33.2±0.0 52.7±1.0 49.0±0.3 29.6±0.9

GCC A,X 35.4±0.0 0.3±0.0 0.0±0.0 69.4±0.1 45.0±0.2 45.4±0.1 70.8±0.0 32.3±0.0 33.2±0.0 54.1±0.8 55.0±0.2 33.3±0.5
CFOND A,X 71.8±0.6 37.2±0.5 38.2±0.7 63.0±1.1 36.6±1.3 36.2±1.2 60.1±0.0 31.4±0.0 28.1±0.0 47.8±3.0 49.5±2.1 30.3±2.5

SCC A,X 81.4±0.0 50.0±0.0 53.9±0.0 69.5±0.0 43.5±0.0 43.7±0.0 70.9±0.0 31.7±0.0 33.2±0.0 59.3±0.6 53.9±0.9 32.7±1.4

Table 3: Training times in seconds of the different subspace
clustering models averaged over ten runs. Ours is the fastest
one on all datasets.

Method ACM CiteSeer PubMed Wiki

ENSC 1395.9 405.2 1416 1447.2

SSC-OMP 168.0 263.4 1447 237.5

LSR 21.5 157.7 OOM 21.1

SCC 9.7 7.4 28.9 8.8

as in [7]. The row propagation order 𝑝 is selected using the selec-

tion rule proposed in [7], while for the column one we set 𝑞 = 1.

We perform ten runs for each model. We use the author provided

implementation and parameters when available. For models that

use a parameter 𝑝 like ours, we run their proposed selection rule

until convergence with no maximum 𝑝 specified, for fairness. All

experiments were performed on the same machine.

3.2 Document Clustering
We compare the methods on document clustering using the Clus-

tering Accuracy (Acc), Normalized Mututal Information (NMI) and

Adjusted Rand Score (ARI) metrics. Table 1 shows the performance

of the different models. Methods that use both graph structure and

features outperform methods that use the node features only except

on ACM where the graph is not informative (most entries are set to

one), we used this dataset to show the robustness of our model in

the face of uninformative graph structure compared to state of the

art attributed graph clustering models. We see that our approach is

competitive and outperforms other models on all datasets in terms

of accuracy. It also has near zero standard deviation on most metrics

which is a sign of robustness. We report in table 3 the training times

of our algorithm compared to other subspace clustering models.

We can see that our subspace clustering approach is faster in the

different datasets by significant margins even though it generates a

clustering for both rows and columns.

3.3 Term Clustering
Co-clustering models additionally generate a clustering for the

terms. Since the PubMed dataset is the only one for which we

Table 4: The three topics found by SCC characterized by their
top ten most frequent terms.

Topic a Topic b Topic c

patient cell rat

insulin mice control

glucos islet activ

type iddm level

group gene increas

subject diseas respons

lt develop signific

risk nod effect

associ children express

treatment betacel plasma

managed to find the actual terms, we performed the term clustering

solely on it. Table 4 presents the most frequent terms for each

topic found by our model. The PubMed dataset contains scientific

papers concerning diabetes. We see that topic 𝑎 contains terms

that are related to a presentation of diabetes, e.g, insulin, glucos,
type, etc. Topic 𝑏 has terms that are related to the microscopic

effects of diabetes such as cell, islet, gene, betacel, and so on. Finally,

topic 𝑐 seems to concern terms that are associated with medical

experimentation and analysis of results such as control, increas,
signific, etc. We note the coherence of these term clusters since they

cluster the PubMed paper contents according to three topics. This

term clustering can then be used to help characterize document

clusters to facilitate interpretation (for more details, see [15]).

4 CONCLUSION
We proposed SCC, a new approach to leverage subspace clustering

for text data through co-clustering and two-way graph convolution.

It circumvents the computational and spatial complexity issues of

subspace clustering through using factor matrices and nonnegative

kernel feature maps. Experiments showed that our model is compet-

itive with the state of the art for attributed graph node clustering

in terms of performance and robustness.
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