
Simultaneous Linear Multi-view Attributed Graph
Representation Learning and Clustering

Chakib Fettal
Centre Borelli, Université Paris Cité

and Informatique CDC
chakib.fettal@etu.u-paris.fr

Lazhar Labiod
Centre Borelli UMR 9010
Université Paris Cité

lazhar.labiod@u-paris.fr

Mohamed Nadif
Centre Borelli UMR 9010
Université Paris Cité

mohamed.nadif@u-paris.fr

ABSTRACT
Over the last few years, various multi-view graph clustering meth-
ods have shown promising performances. However, we argue that
these methods can have limitations. In particular, they are often un-
necessarily complex, leading to scalability problems that make them
prohibitive for most real-world graph applications. Furthermore,
many of them can handle only specific types of multi-view graphs.
Another limitation is that the process of learning graph representa-
tions is separated from the clustering process, and in some cases
these methods do not even learn a graph representation, which
severely restricts their flexibility and usefulness. In this paper we
propose a simple yet effective linear model that addresses the dual
tasks of multi-view attributed graph representation learning and
clustering in a unified framework. The model starts by performing a
first-order neighborhood smoothing step for the different individual
views, then gives each one a weight corresponding to its impor-
tance. Finally, an iterative process of simultaneous clustering and
representation learning is performed w.r.t. the importance of each
view, yielding a consensus embedding and partition of the graph.
Our model is generic and can deal with any type of multi-view
graph. Finally, we show through extensive experimentation that
this simple model consistently achieves competitive performances
w.r.t. state-of-the-art multi-view attributed graph clustering models,
while at the same time having training times that are shorter, in
some cases by orders of magnitude.

CCS CONCEPTS
• Computing methodologies→ Unsupervised learning; • In-
formation systems→ Clustering.
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1 INTRODUCTION AND RELATEDWORK
Attributed graphs are graphs that contain features in their nodes.
Under different approaches, they are used to model a wide variety
of structured data [6, 7, 18] with applications in recommender sys-
tems [4, 19, 35], computer vision, [17, 22, 32], and physical systems
[21]. However, capturing topological (or structural) information at
the same time as capturing information about node-level features
presents challenges, and in the last few years a number of methods
have been proposed for tackling problems such as attributed graph
representation learning and attributed graph clustering.

In some real-world applications, data is collected from a variety
of different sources, which means that it can be characterized using
different sets of information or views. This is the premise of multi-
view learning [31], an area of considerable interest among the data
mining and machine learning communities [1]. In the context of
attributed graphs, a multi-view attributed graph is simply a set of
attributed graphs; each attributed graph counts as a single view.
For example, in the case of a recommender system, the relation-
ship between users can be characterized using a two graphs, one
representing their "friendship", and one representing their mutual
interests; as for the features, one set of features could represent
personal information and another set their past transactions.

The task of multi-view attributed graph clustering has lately
received a lot of attention. The methods that have been proposed
can be separated into two broad approaches. In the first approach, a
consensus graph partition is learned directly from the data without
explicitly learning an embedding of the graph. Methods adopting
this approach include MvAGC [11], where a graph filter is proposed
to perform the graph clustering, and MAGC [12], a similar method
to MvAGC that uses a graph filter to learn a consensus graph before
doing the clustering. The second approach is more flexible; it con-
sists in learning a consensus representation or embedding before
applying a simple single-view attributed graph clustering method.
For example, DMGI [16] is an unsupervised network embedding
method for attributed multiplex networks that uses the concept
of mutual information, while O2MAC [3] is based on the graph
autoencoder [9], it learns clustering-friendly embeddings through
integrating a clustering loss in its objective.

These different methods have their shortcomings. First, the more
flexible approaches that learn a consensus representation gener-
ally tackle the problems of representation learning and clustering
separately, i.e. they learn representations that are not specifically
tailored to clustering. Second, they often have unnecessarily com-
plex architectures in comparison to simpler strategies. Finally, some
of these methods are not generic, in the sense that they require the
multi-view graph to be of a certain type: for example, a multi-view
graph with a multiple structures and a single set of features (but not
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the other way around) like for DMGI, or a graph with exactly two
views, etc. As a way of addressing these shortcomings, we propose
LMGEC (for Linear Multi-view Graph Embedding and Clustering), a
simple yet effective linear model. LMGEC starts by applying a linear
graph filter corresponding to a one-hop neighborhood propagation
step in each individual view, and then applies a weighting scheme
so that views are attended to in order of their perceived importance.
This is followed by an iterative process of simultaneous clustering
and representation learning, which gives rise to a consensus embed-
ding and partition of the graph. The model is generic in the sense
that it can deal with any number of graph structures and/or any
number of feature sets. A high-level schematic representation of the
model is shown in figure 1. Our contributions may be summarized
as follows:
• We introduce a simple yet effective generic linear model for
performing multi-view attributed graph representation learning
simultaneously with clustering. The model is based on (1) a one-
hop neighborhood propagation corresponding to a linear graph
filter, (2) a view weighting scheme reminiscent of the attention
mechanism in neural networks, and (3) a graph clustering and
representation learning linear component that addresses both
tasks via a unified framework.
• We carry out a theoretical study of the linear graph filtering, for-
mulate the problem that we are seeking to solve, and propose an
algorithm that we subject to a detailed computational complexity
analysis.
• We showcase the efficiency and effectiveness of thismodel against
the state of the art through extensive experimentation. We show
that our model is both competitive and several magnitudes more
efficient than current state-of-the-art multi-view attributed graph
clustering.
• We release our code for reproducibility1.

2 PRELIMINARIES
2.1 Definitions and Notations
An attributed graph is defined as a quadruple G = (V, E,A,X)
whereV represents the vertex set, E the edge, X ∈ R𝑛×𝑑 its node
features matrix and A its adjacency matrix of size 𝑛 × 𝑛. A multi-
view attributed graph is represented as a sequence of attributed
graphsM :=

{
G𝑣 = (V𝑣, E𝑣,A𝑣,X𝑣)

}𝑣=𝑉
𝑣=1 . Matrices are denoted

by boldface uppercase and vectors by boldface lowercase letters, 1
represents a column vector of ones. I denotes the identity matrix.
Where X is a matrix, x𝑖 is its 𝑖-th row. A matrix referenced as X𝑣

means that it belongs to the 𝑣-th attributed graph, and its 𝑖-th row
is referenced as x𝑣

𝑖
.

2.2 Graph Filters and the Simple Graph
Convolutional Network

Let G = (V, E,A,X) be an attributed graph whose symmetrically
normalized Laplacian matrix is Lsym = I − D−

1
2AD−

1
2 where D is

the diagonal matrix of degrees of the graph such that 𝑑𝑖𝑖 =
∑

𝑗 𝑎𝑖 𝑗 .
A graph signal can be seen as a vector f = [𝑓 (𝑣1), . . . , 𝑓 (𝑣𝑛)] such
that 𝑓 : V → R is a real-valued function on the vertex set V .

1https://github.com/chakib401/LMGEC

For any graph signal f , we can quantify its smoothness using the
Laplacian quadratic form [37]

S(f) = f⊤Lsymf =
1
2

𝑛∑︁
𝑖, 𝑗

𝑎𝑖 𝑗

(
𝑓𝑖√
𝑑𝑖𝑖
−

𝑓𝑗√︁
𝑑 𝑗 𝑗

)2
. (1)

Now let Lsym = UΛU⊤ be the eigendecomposition of the Laplacian
and {u𝑙 }𝑛𝑙=1 and {𝜆𝑙 }

𝑛
𝑙=1 the sets of eigenvectors and eigenvalues of

Lsym. Since Lsym is symmetric, these eigenvectors form a basis for
R𝑛 , and we can therefore write f = Uc =

∑𝑛
𝑙=1 𝑐𝑙u𝑙 . This implies

that we can write the Laplacian quadratic form as

S(f) = f⊤Lsymf =
(
c⊤U⊤

)
UΛU⊤ (Uc) = c⊤Λc =

𝑛∑︁
𝑙=1

𝑐2
𝑙
𝜆𝑙 , (2)

and that diagonal operators applied to the spectrum of the Laplacian
modulate the smoothness of the signal; consequently, the eigenval-
ues can be seen as the frequencies of the signal [2]. Accordingly, if
we wish to make a graph signal smoother, we should minimize this
measure through removing frequencies that correspond to larger
eigenvalues. This is done using a low-pass filter.

To low-pass filter a graph using a polynomial filter whose frequency-
response function is 𝑔, we use the graph convolution operation
which is defined as

ffiltered = 𝑔
(
Lsym

)
f = U𝑔(Λ)U⊤f (3)

such that 𝑔(Λ) = diag (𝑔(𝜆1), ..., 𝑔(𝜆𝑛)). For example, in the case
of a graph filter corresponding to a GCN [10] with 𝑝 layers, or its
simplified version [29] using a 𝑝-th order feature propagation, its
frequency-response function is given as𝑔(𝜆) = (1−𝜆)𝑝 , or inmatrix
form as 𝑔(Lsym) = (I − Lsym)𝑝 = A𝑝 , which is a polynomial filter
that is low-pass for odd values of 𝑝 and somewhat low-pass for even
values of 𝑝 since the filtering function is not strictly decreasing on
the interval of definition of the eigenvalues 𝐼 = [0, 2]. Note that the
GCN also introduces added self-loops into the adjacency matrix A.
For more details about graph filtering and graph signal processing
in general, we refer the reader to [15, 24].

3 PROPOSED MODEL
Now that we have introduced the necessary background, we can
formulate our problem.

3.1 First-order Neighborhood Propagation and
Linear Graph Filtering

As previously mentioned, the graph neighborhood propagation per-
formed in the GCN acts as a filter on the graph signal and removes
high-frequency noise. We argue, however, that these steps of neigh-
borhood propagation as performed in the GCN are unnecessary
and even counterproductive because of a risk of over-smoothing,
which is when the signal becomes uniform over the different nodes.
To support our argument, we would point to the performance of
the linear graph autoencoder [20], which was competitive w.r.t
more complex GCN-based models. In this paper we are seeking
to show that a first-order (or one-hop) neighborhood propagation,
when applied properly, is also sufficient for the task of simultane-
ous graph clustering and embedding. Given an attributed graph
G = (V, E,A,X), let

Ã← A + 𝛽I (4)

https://github.com/chakib401/LMGEC
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Figure 1: Schematic representation of LMGEC.

be the adjacency matrix with 𝛽 added self-loops and D̃ its diagonal
matrix of degrees. We define our propagation matrix as

S← D̃−1Ã. (5)

The generalized Laplacian Lrw that corresponds to this propagation
matrix is a random walk normalized Laplacian with added self-
loops. The linear propagation operation we propose is

H← SX (6)

where H are the new filtered features. The frequency-response
function associated with this filter is 𝑔(𝜆) = 1−𝜆 or, in matrix form,
𝑔(S) = I − Lrw, which is clearly a linear function that is decreasing
in the interval of definition of the eigenvalues 𝐼 = [0, 2].

3.2 Simultaneous Multi-view Attributed Graph
Representation Learning and Clustering

Given a multi-view attributed graph represented as a set of attrib-
uted graphsM :=

{
G𝑣}𝑣=𝑉𝑣=1 , we define a preliminary version of the

problem of simultaneous multi-view graph representation learning
and clustering as

min
G,F

W1,...,W𝑉

∑︁
𝑣

(∥H𝑣 − H𝑣W𝑣W⊤𝑣 ∥2︸                   ︷︷                   ︸
reconstruction term

+∥H𝑣W𝑣 − GF∥2︸            ︷︷            ︸
clustering term︸                                            ︷︷                                            ︸

individual view loss

)

︸                                                     ︷︷                                                     ︸
multi-view loss

𝑠 .𝑡 . ∀𝑣 W𝑣W⊤𝑣 = I, G ∈ {0, 1}𝑛×𝑘 , G1 = 1

(7)

where W𝑣 ∈ R𝑑𝑣×𝑓 such that 𝑑𝑣 is the dimension of the features in
view 𝑣 , 𝑓 is the dimensionality of the consensus representation we
wish to learn and𝑘 is the number of clusters. The loss corresponding
to each view consists of two terms, namely a reconstruction term
and a clustering term:

• The reconstruction term can be seen as reconstructing the
filtered graph signal of the 𝑣-th view H𝑣 using a semi-orthogonal
matrixW𝑣 similar to what is done in principal component analy-
sis.Wemay draw a parallel with autoencoders, wheremultiplying
byW encodes the data and W⊤ decodes it.
• The clustering term is similar to the 𝑘-means objective ap-
plied to the embeddings learned from the reconstruction process
H𝑣W𝑣 . G is a partition matrix and F is the centroids matrix.

Matrices G and F are the same for each matrix and represent the
consensus partition and centroids respectively. There are, however,
exactly𝑉 W𝑣 matrices, due the fact that the features in the different
views do not necessarily have the same dimensionality. Problem (7)
can be rewritten in a way that combines the two terms as follows

min
G,F,W1,...,W𝑉

∑︁
𝑣

∥H𝑣 − GFW⊤𝑣 ∥2

s.t. ∀𝑣 W𝑣W⊤𝑣 = I, G ∈ {0, 1}𝑛×𝑘 , G1 = 1.
(8)

This formulation is more intuitive, since we can see it as trying
to minimize the discrepancy between each input vector h𝑣

𝑖
and its

corresponding centroid learned in the latent embedding space after
reconstructing g𝑖FW⊤𝑣 . A proof of this is available in [33].

3.3 Paying Attention to the Individual Views
Not all views have the same importance, and for this reason it is not
optimal to directly add the losses from each view without applying
some kind of importance weighting scheme. To address this issue
we introduce a new set of parameters {𝛼𝑣}𝑣=𝑉𝑣=1 such that

∑
𝑣 𝛼𝑣 = 1

where 𝛼𝑣 represents the relative importance of each view 𝑣 . With
this, we obtain the final formulation of our problem

min
G,F,W1,...,W𝑉

∑︁
𝑣

𝛼𝑣 ∥H𝑣 − GFW⊤𝑣 ∥2

s.t. ∀𝑣 W𝑣W⊤𝑣 = I, G ∈ {0, 1}𝑛×𝑘 , G1 = 1.
(9)
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Note, however, that we do not introduce 𝛼𝑣 as a parameter, since
this would cause a solution to pay attention to only a single view,
i.e., the view with the smallest individual view loss. With this in
mind, we define 𝛼 as the softmax 𝛼 of the negative inertia of each
view, and we add a temperature parameter for greater flexibility.
The formula for each 𝛼 is then

𝛼𝑣 ←
𝑒
−𝐼𝑣
𝜏∑𝑤=𝑉

𝑤=1 𝑒
−𝐼𝑤
𝜏

(10)

where 𝐼 stands for inertia. For the 𝑣-th view 𝐼𝑣 is computed as
follows: 𝐼𝑣 = ∥H𝑣 − G𝑣F𝑣 ∥ such that W𝑣 is obtained through a
truncated singular value decomposition (SVD) on X𝑣 , and G𝑣 and
F𝑣 are the results of a 𝑘-means applied on the embeddings of the 𝑣-
th viewX𝑣W𝑣 . When the temperature 𝜏 is sufficiently high, only the
best view in terms of inertia is selected, and when it is sufficiently
low, all the views have the same weight.

4 OPTIMIZATION AND COMPLEXITY
Even though solving LMGEC exactly may be NP-hard, a solution
can be computed reasonably efficiently via the use of heuristics.
To this end, we propose using a Block Coordinate Descent (BCD)
scheme that boils down to iteratively solving sub-problems where
we alternately solve for one ofW1, . . . ,W𝑉 , G, F while keeping the
others fixed. All optimizations are described below.

4.1 Optimizing for G
When solving for G and fixing the other matrices, we obtain the
following problem

min
G

∑︁
𝑣

𝛼𝑣 ∥H𝑣W𝑣 − GF ∥2 𝑠 .𝑡 G ∈ {0, 1}𝑛×𝑘 , G1 = 1.

(11)
This problem is hard to solve, so instead we propose solving the fol-
lowing relaxation obtained using the Cauchy-Schwarz inequality:

min
G

∑︁
𝑣

𝛼𝑣H𝑣W𝑣 − GF
2 𝑠 .𝑡 . G ∈ {0, 1}𝑛×𝑘 , G1 = 1.

(12)
In this way we can efficiently minimize the objective of this problem
with the assignment step

𝑔𝑖 𝑗 ←
{
1 if 𝑗 = argmin

𝑙
∥ (∑𝑣 𝛼𝑣H𝑣W𝑣)𝑖 − f𝑙 ∥2

0 otherwise.
(13)

4.2 Optimizing for F
When optimizing for F we retrieve the same criterion as for G, the
difference lying in the constraints

min
F

∑︁
𝑣

𝛼𝑣H𝑣W𝑣 − GF
2 . (14)

This problem is an instance of an ordinary least-squares problem
whose exact solution is easy to find and is given as

F = (G⊤G)−1G⊤
(∑︁

𝑣

𝛼𝑣H𝑣W𝑣

)
. (15)

4.3 Optimizing forW1, . . . ,W𝑉

Optimizing for the differentW𝑣=𝑉
𝑣=1 matrices results in𝑉 sub-problems.

For a specific W𝑣 , the resulting problem is minW𝑣
∥H𝑣 − GFW⊤𝑣 ∥2

which can be solved using a singular value decomposition as fol-
lows:

W𝑣 = UV⊤ s.t. U, Σ,V = SVD(X⊤𝑣 GF) (16)
For more details on the derivation we refer the reader to [5, 33].

4.4 Optimization Algorithm
The main steps are summarized in Algorithm 1. The loss function
might not be strictly decreasing due to the use of relaxations for the
sub-problems, but it should nevertheless have an overall decreasing
trend, as shown in figure 2 where we observe that our algorithm
does not need many iterations to converge.

Algorithm 1: Block Coordinate Descent (BCD) for LMGEC
Input : - Sequence of views {(A𝑣,X𝑣)}𝑣=1,...,𝑉

- Number of clusters 𝑘
- Embedding dimension 𝑓

- Temperature 𝜏
- Tolerance 𝜖
- Maximum number of iterations max_iter

Output : - Consensus membership indicator G ∈ {0, 1}𝑛×𝑘
- Consensus embedding centers F ∈ R𝑘×𝑓
- Consensus embedding matricesW ∈ R𝑑×𝑓

1 ∀𝑣 H𝑣 ← A𝑣X𝑣 ;
2 ∀𝑣 InitializeW𝑣 through a truncated SVD on H𝑣 ;
3 ∀𝑣 Compute 𝛼𝑣 using formula (10);
4 Initialize G and F through a k-means on

∑
𝑣 𝛼𝑣H𝑣W𝑣 ;

5 while change in loss > 𝜖 and max_iter not reached do
6 ∀𝑣 UpdateW𝑣 using formula (16);
7 Update G using formula (13);
8 Update F using formula (15);
9 𝑙𝑜𝑠𝑠 ← ∑

𝑣 𝛼𝑣 ∥H𝑣 − GFW⊤𝑣 ∥;
10 end

4.5 Complexity Analysis
For simplicity, we suppose that 𝑓 ∈ 𝑂 (𝑘), that 𝑑1, . . . , 𝑑𝑉 ∈ 𝑂 (𝑑)
and that |E1 |, . . . , |E𝑉 | ∈ 𝑂 ( |E |). We also suppose that 𝑘 << 𝑛,𝑑 ,
which is almost always the case in real-world attributed graph
datasets. Note that in what follows, the multiplication of matrix G
with another matrix amounts only to a re-indexing of this other
matrix, because of the structure of G.
• First-order Neighborhood Propagation. This step consumes
roughly 𝑂 (𝑣 |E |𝑑) operations.
• Initializing {W𝑣}𝑣=𝑉𝑣=1 . This step takes 𝑂 (𝑣𝑛𝑑 log(𝑘)) when us-
ing a randomized SVD algorithm.
• Computing {𝛼𝑣}𝑣=𝑉𝑣=1 .Here it is necessary to compute the inertia
as well as the sets {G𝑣}𝑣=𝑉𝑣=1 and {F𝑣}𝑣=𝑉𝑣=1 for each view, totalling
around 𝑂 (𝑣𝑛𝑑𝑘) operations.
• Initializing G and F. Computing the summation

∑
𝑣 𝛼𝑣H𝑣W𝑣

and the application of 𝑘-means on it amounts to 𝑂 (𝑛𝑑𝑘) opera-
tions, where the number of iterations of k-means is held constant.
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• Updating {W𝑣}𝑣=𝑉𝑣=1 . Like their initialization steps, this step takes
roughly 𝑂 (𝑣𝑛𝑑 log(𝑘)).
• Updating G. The rule associated with this step takes 𝑂 (𝑛𝑘2)
computations.
• Updating F. This rule is computed in 𝑂 (𝑣𝑛𝑑𝑘), as a result of
computing the embeddings for the different views H𝑣W𝑣 .
• Objective Value Calculation. The computation here can be
performed in 𝑂 (𝑛𝑑).
• Overall Complexity. Altogether, the total computation time
for our algorithm is 𝑂 (𝑣 |E |𝑑 + 𝑡𝑣𝑛𝑑𝑘), where 𝑡 is the number of
iterations of LMGEC.

5 EXPERIMENTATION
In this section we present the experimental setup and results. We
start by introducing the datasets and the evaluation metrics used
in relation to clustering, the methods used for comparison with
LMGEC, and the experimental settings. We then present the results
in terms of quality of clustering, followed by analysis where we
consider embedding, complexity, sensitivity, and robustness in the
face of noisy views.

5.1 Datasets and Metrics
In order to demonstrate the generic nature of our model we looked
at the three possible types of multi-view attributed graph datasets:
(1) DatasetswithHeterogeneousGraphTopology.These datasets

have the same set of features X but multiple graph topologies,
i.e. multiple adjacency matrices {A𝑣}𝑣=𝑉𝑣=1 . They include ACM,
DBLP and IMDB.

(2) Datasets with Heterogeneous Features. These datasets have
the same graph structureA butmultiple sets of features {X𝑣}𝑣=𝑉𝑣=1 .
The example we chose was Amazon Photos.

(3) Datasets with Both. These datasets have multiple graph struc-
tures {A𝑣}𝑣=𝑉𝑣=1 as well as multiple sets of features {X𝑣}𝑣=𝑉𝑣=1 , The
only such dataset is Wiki for which we create the additional
views from the initial data, we initially have a single topology
and features, we then generate a second topology using a near-
est neighbor graph based on the cosine distance and a second
set of features by using a log-scale of the original ones.

The characteristics of these datasets are given in table 1. In quan-
tifying the quality of a clustering we use four metrics: clustering
accuracy (CA), clustering F1-score (F1) [27], normalized mutual
information (NMI) [25] and adjusted rand index (ARI) [8].

5.2 Baselines
Below we list all the methods evaluated in our proposal.
• LINE [26]: A single-view graph embedding method. It is applied
on each view and the best results are reported.
• GAE [9]: Another single-view graph embedding method based
on the autoencoder.
• X-avg: To utilize multiple views of a network we apply the X
method to learn node representations on each single view, then
average all learned representations.
• LINE-avg andGAE-avg: By this wemean that the node represen-
tations learned for each view using LINE and GAE are averaged
and clustered as such.

• MNE [36]: A scalable multi-view network embedding model.
Only the graph structure information (adjacency matrix) of each
view is input into this model.
• PMNE [13]: Encompasses three multi-view graph embedding
methods, including network aggregation PMNE (n), results ag-
gregation PMNE (r) and layer co-analysis PMNE (c).
• RMSC [30]: A multi-view spectral clustering method that uses
Markov chains and low-rank decomposition.
• PwMC and SwMC [14]: PwMC is a parameter-weighted multi-
view graph clustering method, while SwMC is a self-weighted
multi-view graph clustering method.
• O2MA and O2MAC [3]: O2MAC is also an autoencoder-based
multi-view graph clustering method. O2MA is a simplified ver-
sion of O2MAC with the clustering loss removed from the objec-
tive function.
• DMGI [16]: This is an unsupervised embedding method for at-
tributed multiplex network embedding. This approach is only ap-
plicable to datasets with one set of features and multiple graphs.
• MvAGC [11]: Performs graph filtering to do multi-view attrib-
uted graph clustering.
• MAGC [12]: A multi-view graph clustering method that utilizes
both node attributes and graphs.

5.3 Experimental Settings
We use the clustering results reported in the original papers where
possible. When performing our own tests we tried to follow the
setups prescribed by the authors of the different models as faith-
fully as possible. For our model, we set the maximum number of
iterations to 30, the tolerance to 0 and 𝑓 = 𝑘 + 1 in all experiments.
We performed experiments with different hyper-parameter values
for 𝛽 and 𝜏 . We did a tf-idf normalization of the inputs to our model,
and we also centered the data after neighborhood propagation. For
the values of 𝛽 and 𝜏 , we try 𝛽 ∈ {.2, 1, 2} and 𝜏 ∈ {1, 10, 100} and
we report the best results. The different experiments were run on
the same machine with two Intel(R) Xeon(R) CPU @ 2.20GHz and
13GB RAM. Most of the source codes in the official repositories of
the baselines were not optimized for GPU. Note that the results
reported for our method are the averages of five runs.

5.4 Experimental Results
Below we study in detail the results from our comparisons and
highlight the interest of LMGEC.

Clustering Results. Tables 2 and 3 show the results of our ex-
periments for the clustering task. Some of the results for ACM,
DBLP, IMDB and Amazon Photos are taken from [3, 11, 12], while
results for Wiki are those that we obtained in our experiments. The
pattern that emerges is that methods combining multi-view infor-
mation tend to outperform those using single-view information.
Ourmodel LMGEC consistently achieves competitive performances,
outperforming other models on ACM, DBLP, IMDB, Amazon Pho-
tos and Wiki on most metrics, and being competitive on IMDB,
where it has the second best results on two out of four performance
metrics. Overall, our model offers the best results in 15 out of 20
cases and has the best or second best results in 18 out of 20 cases,
showing that it is competitive despite its simple nature. Note that
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Table 1: Characteristics of the Datasets. For wiki, there are two topologies and two features matrices leading to four possible
combinations/views.

Dataset Multi-view type #Views #Nodes #Features #Edges #Clusters

ACM [28] Topology 2 3,025 1,830 29,281
2,210,761 3

DBLP [28] Topology 3 4,057 334
11,113

5,000,495
6,776,335

4

IMDB [28] Topology 2 4,780 1,232 98,010
21,018 3

Amazon Photos [23] Features 2 7,487 745
7,487 119,043 8

Wiki [34] Both 4 2405
2405

4973
4973

24,357
12,025 17

Table 2: Clustering results on ACM, DBLP and IMDB. Best results are highlighted in bold and the second best results in italic.

Model ACM DBLP IMDB
CA F1 NMI ARI CA F1 NMI ARI CA F1 NMI ARI

LINE-avg 0.6479 0.6594 0.3941 0.3433 0.875 0.866 0.6681 0.7056 0.4719 0.2985 0.0063 -0.009
GAE 0.8216 0.8225 0.4914 0.5444 0.8859 0.8743 0.6925 0.741 0.4298 0.4062 0.0402 0.0473
GAE-avg 0.699 0.7025 0.4771 0.4378 0.5558 0.5418 0.3072 0.2577 0.4442 0.4172 0.0413 0.0491
MNE 0.637 0.6479 0.2999 0.2486 out of memory error 0.3958 0.3316 0.0017 0.0008
PMNE(n) 0.6936 0.6955 0.4648 0.4302 0.7925 0.7966 0.5914 0.5265 0.4958 0.3906 0.0359 0.0366
PMNE(r) 0.6492 0.6618 0.4063 0.3453 0.3835 0.3688 0.0872 0.0689 0.4697 0.3183 0.0014 0.0115
PMNE(c) 0.6998 0.7003 0.4775 0.4431 out of memory error 0.4719 0.3882 0.0285 0.0284
RMSC 0.6315 0.5746 0.3973 0.3312 0.8994 0.8248 0.7111 0.7647 0.2702 0.3775 0.0054 0.0018
PwMC 0.4162 0.3783 0.0332 0.0395 0.3253 0.2808 0.019 0.0159 0.2453 0.3164 0.0023 0.0017
SwMC 0.3831 0.4709 0.0838 0.018 0.6538 0.5602 0.376 0.38 0.2671 0.3714 0.0056 0.0004
O2MA 0.888 0.8894 0.6515 0.6987 0.904 0.8976 0.7257 0.7705 0.4697 0.4229 0.0524 0.0753
O2MAC 0.9042 0.9053 0.6923 0.7394 0.9074 0.9013 0.7287 0.778 0.4502 0.4159 0.0421 0.0564
DMGI 0.8973 0.8985 0.6974 0.7296 0.8722 0.8691 0.6931 0.7034 0.5827 0.4253 0.1317 0.1457
MvAGC 0.8975 0.8986 0.6735 0.7212 0.9277 0.9225 0.7727 0.8276 0.5633 0.3783 0.0371 0.0940
MAGC 0.8806 0.8835 0.6180 0.6808 0.9282 0.9237 0.7768 0.8267 0.6125 0.4551 0.1167 0.1806
LMGEC 0.9302 0.9311 0.7513 0.8031 0.9285 0.9241 0.7739 0.8284 0.5893 0.4267 0.0632 0.1294

Table 3: Clustering results on Amazon Photos and Wiki. Additionally, we report the performance of LMGEC on each individual
view (for the other datasets see figure 4). Note that Amazon Photos has only two views, while Wiki has four.

Model Amazon Photos Wiki
CA F1 NMI ARI CA F1 NMI ARI

LMGEC (view 1) 0.6726 0.6451 0.5903 0.4865 0.4757 0.4154 0.4772 0.2944
LMGEC (view 2) 0.6835 0.6164 0.5971 0.4896 0.5181 0.4463 0.5079 0.3226
LMGEC (view 3) - - - - 0.5202 0.4333 0.5383 0.3401
LMGEC (view 4) - - - - 0.5264 0.4384 0.5362 0.3455
MAGC 0.4511 0.3359 0.4297 0.1127 0.4972 0.4084 0.5139 0.2707
MvAGC 0.6775 0.6397 0.5237 0.3968 0.3297 0.2432 0.3531 0.0864
LMGEC 0.7117 0.6500 0.6114 0.5123 0.5333 0.4501 0.5408 0.3496
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(a) ACM (b) DBLP (c) IMDB (d) Photos (e) Wiki

Figure 2: Evolution of the loss value across iterations using BCD for LMGEC.

(a) ACM (b) DBLP (c) IMDB (d) Photos (e) Wiki

Figure 3: Two-dimensional projections of the LMGEC embeddings using t-SNE colored according to the real class labels.

(a) ACM (b) DBLP (c) IMDB

Figure 4: Performance of LMGEC on each individual view vs. its consensus performance when considering all views on ACM,
DBLP and IMDB (for the other datasets see table 3).

Table 4: Training times. Best results are in bold, second best
results are in italic. DMGI is only applicable to datasets with
one set of features.

Model ACM DBLP IMDB Wiki Amazon Photos

DMGI 943.19 3117.87 843.96 - -
MvAGC 14.48 26.28 32.97 34.73 139.14
MAGC 139.93 242.99 395.45 150.93 1661.64
LMGEC 3.49 3.07 4.96 18.06 19.42

for datasets with multiple features, in our experiments we used
only the baselines that were the best performing (on average).

We can see the benefits of our model from tables 2 and 3 and
from figure 4, where the performance of LMGEC on individual
views is shown against the consensus performance; the consensus
performance is consistently better than for the individual views.
In some instances LMGEC applied to the individual views even
outperforms state-of-the-art models, for example, on ACM, Amazon
Photos and Wiki.

Embedding Results. Figure 3 depicts the embeddings produced
by LMGEC on the different datasets by projecting them onto a 2d-
plane using t-SNE. A clustering structure is visible on all datasets
apart from IMDB, where the embeddings are not very well sepa-
rated.

Efficiency Results. We report the training times of our method
in table 4 as well as those of the best performing (on average)
baselines in our experiments. Our model is consistently much faster
than other models, improving on the training time of the second
fastest model (MvAGC) by 75%, 89%, 85%, 48% and 86% on ACM,
DBLP, IMDB, Wiki and Amazon Photos respectively.

Sensitivity Analysis. In our experiments we tried various val-
ues for the 𝛽 and 𝜏 hyperparameters. Figure 5 illustrates the perfor-
mance of LMGEC for different pairs of these parameter values on
the different datasets and for the different clustering metrics. We see
that the on most datasets the performance remains fairly constant,
which is an indication of LMGEC’s robustness. The exception is
ACM, where LMGEC is sensitive to the temperature parameter 𝜏
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(a) ACM

(b) DBLP

(c) IMDB

(d) Amazon Photos

(e) Wiki

Figure 5: Sensitivity analysis of the parameters of LMGEC on the graph topology heterogeneous datasets.

because of the presence of uninformative views. We discuss this in
greater detail in the following paragraph. As a rule of thumb, we
suggest taking 𝜏 = 10 and 𝛽 = 1.

Robustness in the face of noisy views. In real applications
noisy data sources are not uncommon and can impair the perfor-
mance of multi-view models. Since LMGEC takes into account the
importance of the different views via a weighting scheme based
each view’s inertia, it is able to filter out noisy views by increas-
ing the temperature 𝜏 of the softmax function used in computing
{𝛼𝑣}𝑣=𝑉𝑣=1 . Tables 2 and 3 and figure 4 report the clustering perfor-
mance of LMGEC on each individual view for the different datasets,
as well as the consensus performance. In the case of DBLP we
may consider that the first view is noisy, since LMGEC performs
considerably less well on this view than on the second and third
views. We remark, however, that the consensus performance is not
influenced by the presence of this noisy view, which shows the
robustness of LMGEC in the face of noise. The same is true of Wiki

as regards the first view, albeit less significantly than for DBLP,
since the performance gap is not as flagrant w.r.t the other views.

6 CONCLUSION
In this paper we proposed a simple linear additive model that ad-
dresses the dual tasks of multi-view attributed graph representation
learning and multi-view attributed clustering in a unified frame-
work. This model is more generic than most state-of-the-art ap-
proaches in the sense that it can deal with any number of graph
structures and/or any number of feature sets. Experiments showed
that our model is competitive with more complex state-of-the-art
models, outperforming these models on most benchmarks in terms
of both performance and computation time.

ACKNOWLEDGMENTS
This work has been funded by Informatique Caisse des Dépôts et
Consignations (ICDC), Association Nationale de la Recherche et de
la Technologie (ANRT), and Idex-Spectrans of UP Cité.



Simultaneous Linear Multi-view Attributed Graph Representation Learning and Clustering WSDM ’23, February 27-March 3, 2023, Singapore, Singapore

REFERENCES
[1] Rafika Boutalbi, Lazhar Labiod, and Mohamed Nadif. 2021. Implicit consensus

clustering from multiple graphs. Data Mining and Knowledge Discovery 35, 6
(2021), 2313–2340.

[2] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. Advances
in neural information processing systems 29 (2016).

[3] Shaohua Fan, Xiao Wang, Chuan Shi, Emiao Lu, Ken Lin, and Bai Wang. 2020.
One2multi graph autoencoder for multi-view graph clustering. In Proceedings of
The Web Conference 2020. 3070–3076.

[4] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph Neural Networks for Social Recommendation. In TheWorldWideWeb
Conference (San Francisco, CA, USA) (WWW ’19). Association for Computing Ma-
chinery, New York, NY, USA, 417–426. https://doi.org/10.1145/3308558.3313488

[5] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. 2022. Efficient Graph Con-
volution for Joint Node Representation Learning and Clustering. In Proceedings
of the Fifteenth ACM International Conference on Web Search and Data Mining.
289–297.

[6] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. 2022. Subspace Co-clustering
with Two-Way Graph Convolution. In Proceedings of the 31st ACM International
Conference on Information & Knowledge Management. 3938–3942.

[7] Chakib Fettal, Lazhar Labiod, and Mohamed Nadif. 2023. Scalable Attributed-
Graph Subspace Clustering. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 37.

[8] Lawrence Hubert and Phipps Arabie. 1985. Comparing partitions. Journal of
classification 2, 1 (1985), 193–218.

[9] Thomas N Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

[10] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations (ICLR).

[11] Zhiping Lin and Zhao Kang. 2021. Graph Filter-based Multi-view Attributed
Graph Clustering.. In IJCAI. 2723–2729.

[12] Zhiping Lin, Zhao Kang, Lizong Zhang, and Ling Tian. 2021. Multi-view attributed
graph clustering. IEEE Transactions on Knowledge and Data Engineering (2021).

[13] Weiyi Liu, Pin-Yu Chen, Sailung Yeung, Toyotaro Suzumura, and Lingli Chen.
2017. Principled multilayer network embedding. In 2017 IEEE International
Conference on Data Mining Workshops (ICDMW). IEEE, 134–141.

[14] Feiping Nie, Jing Li, Xuelong Li, et al. 2017. Self-weighted Multiview Clustering
with Multiple Graphs.. In IJCAI. 2564–2570.

[15] Antonio Ortega, Pascal Frossard, Jelena Kovačević, José MF Moura, and Pierre
Vandergheynst. 2018. Graph signal processing: Overview, challenges, and appli-
cations. Proc. IEEE 106, 5 (2018), 808–828.

[16] Chanyoung Park, Donghyun Kim, Jiawei Han, and Hwanjo Yu. 2020. Unsu-
pervised attributed multiplex network embedding. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 34. 5371–5378.

[17] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. 2017. 3D
Graph Neural Networks for RGBD Semantic Segmentation. In 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV). 5209–5218.

[18] Paul Riverain, Simon Fossier, and Mohamed Nadif. 2022. Semi-supervised Latent
Block Model with pairwise constraints. Machine Learning 111, 5 (2022), 1739–
1764.

[19] Aghiles Salah and Mohamed Nadif. 2017. Social regularized von Mises–Fisher
mixture model for item recommendation. Data Mining and Knowledge Discovery

31, 5 (2017), 1218–1241.
[20] Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. 2020. Simple

and effective graph autoencoders with one-hop linear models. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
319–334.

[21] Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel,
Martin Riedmiller, Raia Hadsell, and Peter Battaglia. 2018. Graph networks as
learnable physics engines for inference and control. In International Conference
on Machine Learning. 4470–4479.

[22] Victor Garcia Satorras and Joan Bruna Estrach. 2018. Few-Shot Learning with
Graph Neural Networks. In International Conference on Learning Representations.
https://openreview.net/forum?id=BJj6qGbRW

[23] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of graph neural network evaluation. arXiv preprint
arXiv:1811.05868 (2018).

[24] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE signal processing magazine 30, 3 (2013), 83–98.

[25] Alexander Strehl and Joydeep Ghosh. 2002. Cluster ensembles—a knowledge
reuse framework for combining multiple partitions. Journal of machine learning
research 3, Dec (2002), 583–617.

[26] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[27] van Rijsbergen (CJ). 1979. Information retrieval. Butterworth.
[28] XiaoWang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu.

2019. Heterogeneous graph attention network. In The world wide web conference.
2022–2032.

[29] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[30] Rongkai Xia, Yan Pan, Lei Du, and Jian Yin. 2014. Robust multi-view spectral
clustering via low-rank and sparse decomposition. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 28.

[31] Chang Xu, Dacheng Tao, and Chao Xu. 2013. A survey on multi-view learning.
arXiv preprint arXiv:1304.5634 (2013).

[32] Danfei Xu, Yuke Zhu, Christopher Choy, and Li Fei-Fei. 2017. Scene Graph Gen-
eration by Iterative Message Passing. In Computer Vision and Pattern Recognition
(CVPR).

[33] Michio Yamamoto and Heungsun Hwang. 2014. A general formulation of cluster
analysis with dimension reduction and subspace separation. Behaviormetrika 41,
1 (2014), 115–129.

[34] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y. Chang. 2015.
Network Representation Learning with Rich Text Information. In IJCAI.

[35] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 974–983.

[36] Hongming Zhang, Liwei Qiu, Lingling Yi, and Yangqiu Song. 2018. Scalable
multiplex network embedding.. In IJCAI, Vol. 18. 3082–3088.

[37] Dengyong Zhou and Bernhard Schölkopf. 2004. A regularization framework
for learning from graph data. In ICML 2004 Workshop on Statistical Relational
Learning and Its Connections to Other Fields (SRL 2004). 132–137.

https://doi.org/10.1145/3308558.3313488
https://openreview.net/forum?id=BJj6qGbRW

	Abstract
	1 Introduction And Related Work
	2 Preliminaries
	2.1 Definitions and Notations
	2.2 Graph Filters and the Simple Graph Convolutional Network

	3 Proposed Model
	3.1 First-order Neighborhood Propagation and Linear Graph Filtering
	3.2 Simultaneous Multi-view Attributed Graph Representation Learning and Clustering
	3.3 Paying Attention to the Individual Views

	4 Optimization and Complexity
	4.1 Optimizing for G
	4.2 Optimizing for F
	4.3 Optimizing for W1,…,WV
	4.4 Optimization Algorithm
	4.5 Complexity Analysis

	5 Experimentation
	5.1 Datasets and Metrics
	5.2 Baselines
	5.3 Experimental Settings
	5.4 Experimental Results

	6 Conclusion
	Acknowledgments
	References

