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ABSTRACT

Attributed graphs are used to model a wide variety of real-world
networks. Recent graph convolutional network-based represen-
tation learning methods have set state-of-the-art results on the
clustering of attributed graphs. However, these approaches deal
with clustering as a downstream task while better performances
can be attained by incorporating the clustering objective into the
representation learning process. In this paper, we propose, in a
unified framework, an objective function taking into account both
tasks simultaneously. Based on a variant of the simple graph con-
volutional network, our model does clustering by minimizing the
difference between the convolved node representations and their
reconstructed cluster representatives. We showcase the efficiency
of the derived algorithm against state-of-the-art methods both in
terms of clustering performance and computational cost on the de
facto benchmark graph clustering datasets. We further demonstrate
the usefulness of the proposed approach for graph visualization
through generating embeddings that exhibit a clustering structure.

CCS CONCEPTS

« Computing methodologies — Cluster analysis; Dimension-
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1 INTRODUCTION

In data science, low-dimensional representation learning is com-
monly used for visualization purposes, but it can also play a sig-
nificant role in the clustering task, where the aim is to divide a
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dataset into homogeneous clusters. Indeed, working with a low-
dimensional space can be useful when partitioning data, and a
number of approaches are reported in the literature. Recently, the
authors in [20] have performed experiments on the sequential com-
bination of deep representation learning techniques such as the
autoencoder (AE), variational AE [4] and convolutional AE [14, 21],
and some popular clustering methods such as k-means; interac-
tive Python Notebooks and further technical details can be found
at 1. They observed that this improves clustering results but that
there is no ‘one size fits all’. Thus, low-dimensional representation
learning followed by cluster analysis can be helpful in data science.
The k-means applied on data embeddings, derived from classical
embedding methods such as the AE for instance, is a popular ap-
proach. This procedure is carried out sequentially and is referred
to as the tandem approach [43]. However, AE may sometimes be
unsuitable for reducing dimension before clustering; it can fail to
retain information which could be valuable for the clustering task.
Hence, jointly optimizing for both tasks —representation learning
and clustering- is a good alternative [2, 3, 13, 24]. Learning repre-
sentations that are both faithful to the data while simultaneously
adjusting them to a have a clustering-friendly structure can lead to
a better clustering performance [6, 9, 13].

Clustering in the context of attributed graphs, which are graphs
whose nodes and/or edges have attributes or features, despite be-
ing an important unsupervised task, has proved more impervious
to such advances. Furthermore, some of these attributed graph
clustering methods suffer from high spatial and/or computational
complexity. Unlike most existing approaches, this paper aims to
overcome this weakness by considering a joint graph embedding
and clustering, which alternates iteratively between both tasks, that
is to say between embedding and clustering. Attributed graphs are
used to model a wide variety of real-world networks such as recom-
mender systems [12, 32, 47], computer vision [30, 35, 46], Natural
language processing [26, 37] and physical systems [19, 34]. Due to
the irregular high-dimensional non-euclidean structure of graphs
as well as the various node-level features it may contain, looking
for suitable euclidean-representations that incorporate the struc-
tural and features’ information of these graphs is an interesting
challenge in machine learning [17]. Recent literature proposes to
learn these representations automatically. Loosely speaking, these
representation learning methods aim at embedding the nodes into
a low-dimensional space where in the embedded nodes’ proximity
should be similar enough to that of those in the original graph
representation. These methods can be based on approaches such as

!https://github.com/rezacsedu/Deep-learning-for-clustering-in-bioinformatics
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factorization [1, 7], random walks [15, 29], or neighborhood autoen-

coders [41, 50]. Recently, the Graph Convolutional Network (GCN)

[10, 23] has garnered a lot of attention due to its ability to learn

high-quality graph representations, and by extension, its effective-

ness for different graph-related tasks such as node classification,
link prediction, and node clustering which is the task our paper
focuses on. This node clustering, however, is generally performed
as a downstream task but some efficient GCN-based approaches for
the simultaneous embedding and clustering have recently emerged

[5, 48]. In this paper, we propose to rely on the GCN to develop

a novel Graph Convolutional Clustering model referred to as GCC

that is capable of taking into account both tasks simultaneously.

Our contributions in this paper can be summarized as follows:

- We provide a variant of the GCN propagation matrix and demon-
strate how it makes the GCN truly act as a low-pass filter.

- We propose a new formulation combining the graph convolu-
tional representation learning and the clustering processes and
show how our proposed GCC approach is related to some other
methods.

- We derive an efficient algorithm referred to as GCC? and study
its computational complexity in detail. We release the code® for
easy reproducibility.

- We perform experimentations to showcase the worth of our
proposal both in terms of clustering and quality of embedding.
This paper is organized as follows. Section 2 presents related

works. Section 3 presents the proposed approach and its derivation.

Section 4 is devoted to the proposed algorithm and its computational

complexity study. In section 5, we compare GCC with the state-of-

the-art in terms of clustering and evaluate its performance in terms
of embedding. Finally, Section 6 presents our conclusions.

2 RELATED WORK

Our contributions lie in the intersection of several research topics,
graph representation learning, graph clustering and graph convo-
lutional neural networks.

Unsupervised Graph Representation learning. Unsupervised
Graph Representation learning is generally done either through
contrastive learning or via autoencoders.

The contrastive methods learn representations in a self-supervised
way. They commonly rely on maximizing mutual information. DGI
[40], for example, maximizes mutual information between node
and graph representations. InfoGraph [38] expands the previous
concept to graph substructures of different scales rather than just
the node-level e.g. edges, triangles.

Autoencoder-based models learn embeddings by trying to recon-
struct some property of the graph, generally the adjacency matrix.
Variational Graph Autoencoders (VGAE) [22] extend the concept
of variational autoencoders to the graph context, it uses a GCN
based encoder and a dot product decoder. Linear variational Graph
autoencoders [33] simplify VGAE by defining the encoder to be a
linear transformation with a one-hop propagation matrix.

Graph Clustering. Graph clustering is the process of grouping
nodes into clusters depending on the structure of the graph and/or

2From now on, in order to distinguish between a model and its derived algorithm, we
will use typewriter font for an algorithm. Consequently, GCC is the model and GCC its
derived algorithm.

3https://github.com/chakib401/graph_convolutional_clustering

node-level features. By only considering node attributes, classical
clustering algorithms can be used to cluster the graph. Algorithms
that rely on graph structure exclusively include the spectral clus-
tering algorithm [28] that optimizes the ratio and normalized-cut
criteria. Graclus [11] is mathematically equivalent to the spectral
clustering algorithm but is faster due to not having to compute the
eigenvalues of the graph Laplacian.

Finally, approaches that leverage both graph structure and node
attributes commonly learn representations before applying classical
clustering algorithms on them [42, 49]. However, some recent works
explored integrating the clustering loss directly into the objective.

Clustering-friendly Graph Representation Learning. Lit-
erature on joint representation learning and clustering claim that
doing the two tasks simultaneously can improve clustering quality.
DCN [44] proposed to include the k-means clustering loss to the au-
toencoder loss as a regularization. Deep k-means [13] followed on
this concept by proposing a fully differentiable formulation of this
problem. In the context of attributed graph clustering, joint cluster-
ing and embedding is starting to receive some attention. GEMSEC
[31] maximizes the information between labels and visual input
data indices in order to self-label the data. AGC [48] proposes to
exploit high-order neighborhoods in the clustering process through
an adaptive rule for neighborhood order selection. Deep Modularity
Network [5] clusters the graph by maximizing spectral modularity.
Graph InfoClust (GIC) [27] computes clusters by maximizing the
mutual information between nodes contained in the same cluster.

3 PROPOSED METHOD

In this section we describe how we formulate the simultaneous
node embedding and clustering problem. Then we propose a new
model for solving it (as depicted in figure 1).

3.1 Preliminaries and Notations

Let G = (V, A, X) be an attributed undirected graph where V rep-
resents the vertex set consisting of nodes {v1, ...,on}, A € R™" is a
symmetric adjacency matrix where a;; denotes the edge weight be-
tween nodes v; and v, and X € R™4 is a node-level feature matrix.
Tr denotes the trace of a matrix. In what follows k represents the
number of clusters. f is the embedding dimension. 1,, represents
a column vector of m ones. I, represents an identity matrix of
dimension m. If G is a matrix then m; is its i-th row vector, m’, is

its j-th column vector and m;; is the j-th element of the i-th row.

3.2 Joint Graph Representation Learning and
Clustering

We formulate the simultaneous node embedding and clustering
problem as follows

2
min dec (e C a A,X ) —a A,X H
1.02,G, H 0, 91( gg( )) gg( )

reconstruction term

+a Hencg1 (agg(A, X)) - GF”2 1)

clustering regularization term

st. Ge{0,1} G1,=1,
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Figure 1: Schema of the GCC model: GCC creates an initial representation of the graph before iteratively learning to embed
and cluster the data. The graph signal is represented by the colors of the node. Feature propagation results in a smoother

signal.

where ency, is the encoding function, decy, is the decoding func-
tion, agg(A, X) is some aggregate of A and X which represents the
information contained in the graph (structure and node-features),
G € {0, 1}k the binary classification matrix, F € Rkxd play the
role of centroids in the embedding space and « is a coefficient
that regulates the trade-off between seeking reconstruction and
clustering.

The clustering regularizer is the k-means clustering loss [25] on
the encoded observations. It penalizes transformations that do not
result in a clustering-friendly representations.

3.3 Linear Graph Embedding

Linear graph autoencoders (LGAE) [33] have shown that a linear
encoder with an inner product decoder can be powerful enough to
reach competitive results w.r.t more complex GCN-based models
on the link prediction and node clustering tasks. Consequently, we
also define our encoder to be a simple linear transformations i.e.

enc(agg(A, X); W1) = agg(A, X)W,

In LGAE, the decoder attempts to reconstruct the adjacency
matrix A rather than an aggregation of A and X. This means that
this type of decoder is not suitable for our problem. Therefore, we
also define the decoder as a simple linear transformation

dec(Z; W3) = ZW,
where Z = agg(A, X)W1.

3.4 Normalized Simple Graph Convolution

Our choice for the aggregate function is inspired by the simple
graph convolution proposed in SGC [42]. We set

agg(A,X) = TPX )

but rather than have T be the symmetric normalized adjacency
matrix with added self-loops, we define it to be

T=Dy }(1+95) (3

where § = D™/2ADY/2 withA = A+Iand D (resp. D) being the
diagonal matrix of degrees of A (resp. I+ S).

The GCN, and by extension the SGC, do graph signal filtering
with matrix I-§ =1-D~1/2 I- I~‘)]~)71/2 where L is the Laplacian
of A. The frequency response function of this filter is h(/fl) =1- }[1
where A; is a frequency of the graph. In the GCN stacking K-layers,
or equivalently raising S to power K in SGC, implies doing the
filtering with frequency response function hK(/{I) =(1- /fl)K .
This filter is low-pass on [0, 1] but not [0, 1.5]. We then propose
to further add self-loops and row normalize matrix S. This has the
following effects

o From the spectral perspective: The proposed normalization
further shrinks the spectrum of the matrix to lie in [0, 1], as
can be seen in figure 2, which makes the filter truly low-pass.

e From the spatial perspective: Each transformed vertex be-
comes a weighted-average of the neighbors which is more
intuitive but it also takes into account column degree infor-
mation unlike direct random walk adjacency normalization.

We further motivate this choice in the experiments section. Thereby,
with this aggregation function, our problem turns into

min_ || TPX - TPXW W, ||? + a || TPXW; - GF ||
G,FW{,W,

st. Ge {01} G =1,

Both terms of (4) make it possible to express a connection between
the two tasks, the first term plays the role of linear autoencoder
and the second the role of clustering in the embedding space. We
decide in the following to give the same weight for the two terms
(a =1).

3.5 Graph Convolutional Clustering

To obtain a mutual supplementation between embedding and clus-
tering, we assume W = W1 = W3 and add an orthogonality
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Figure 2: frequency response of the proposed GCN filter plot-
ted against the frequency on four real-world datasets

constraint on W in (4). It gives rise to the following problem

min || T’X - TPXWW' ||?+ || T’XW - GF ||?

G, FW (5)
st. Ge {01}k Gl =1, WTW=1I

Similar to [43], solving this problem can be proven to be equivalent
to
min | T’X - GFW" ||?
GFW (6)
st. Ge {01}k Gl =1, WTW=1I

To prove this, we first decompose the reconstruction term
[ITPX — TPXWW T [|? = ||TPX]| | + |[TPXWW T ||? — 2||TPXW| |2
= |ITPX||? - ||TPXW]|?

Similarly, the clustering regularization term can be decomposed as
follows

[[T’XW — GF||? = [|[T?XW]||? + ||GF||? — 2Tr((T?XW) T GF)
Summing the two resulting expressions we get

[IT?X||? + ||GF||? - 2Tr((T’XW) T GF) = ||T?X — GFW | |?

due to ||GFWT|| = ||GF||

Thus, optimizing (5) is equivalent to optimizing (6) L.

Before tackling the resolution of this problem in section 4, we
will first look at how our proposed GCC approach is related to some
other methods.

3.6 Connections to Existing Work

Simple Graph Convolution Variants. Similarly to SGC, the com-
putation of TP X can be considered to be a pre-processing step with a
different propagation matrix T. This representation is then used for
a downstream task. In the original paper that task was classification
where the representation is fed to a linear regression model corre-
sponding to a fully connected neural network layer with sigmoid
activations. Other variants of the simple graph convolution can

due to WTW =1

also be used as the aggregation function e.g. for the simple spectral
P

graph convolution (S?GC) [49] we have agg(A,X) = P% > THX.
i=1

Graph Autoencoder and Linear Graph Autoencoder. Our
model can be seen as a case of the non-probabilistic variant of the
VGAE model adapted to graph clustering. Like VGAE, the encoder
we use is a form of GCN but rather than an inner-product decoder,
we use a linear decoder. The original graph autoencoder was used
for link-prediction, i.e., it tried to reconstruct a completed version
of the adjacency matrix A. In our case we reconstruct the convolved
matrix TPX

Deep Clustering Network. From X, the DCN algorithm [44]
also performs unsupervised clustering using a deep autoencoder; it
uses an optimization objective that is a weighted combination of a
reconstruction error and a clustering error. The DCN cost function
is given by

A
| €90, o, (x)).xi) + 5 Z I o, (i) - 68 |13

min
01,0,,G,{f;
st sij€{0,1},17f=1

where f is the encoder and g is the decoder, {f;} are the centroids,
G is a membership matrix and ¢ is a loss function. If we take A = 2,
the encoder and decoder to be linear functions f(x; W) = xW and
g(x; WT) = xWT with a semi-orthogonality constraint on W, the
loss function to be the mean squared error and by considering
the observations to be the rows of T?X we get the problem as
formulated in (5). As for the optimization process, the update rule is
the same for the cluster assignment while it differs in the centroids,
encoder and decoder updates.

4 OPTIMIZATION AND ALGORITHM

Directly optimization problem in (6) is tricky so we use the follow-
ing alternating iterative approach. The algorithm alternately fixes
two of the matrices F, G and W and solves for the third one.

4.1 Optimization Procedure

For each matrix, through fixing the two other matrices we obtain a
formula which can be solved directly. The solutions to these modi-
fied problems are guaranteed to decrease the overall cost function
monotonically. The initialization and update rules are described in
what follows.

Initialization. We initialize W with the first f components ob-
tained from applying a randomized Principal Component Analysis
(PCA) on TPX. Matrices F and G are then obtained via a k-means
on TPXW.

Update Rule for F. By fixing G and W and solving for F we
obtain a linear least squares problem. By setting the derivative to
zero, we obtain the normal equation which is the optimal solution
to the given problem. The update rule is then

F=(G'G)"'GTT’XW. )

Intuitively, each row vector f; is set to the average of the embed-
dings XW that are assigned to cluster i. In the k-means algorithm



this corresponds to the centroid update step.

Update Rule for W. By fixing G and F and solving for W, the
update rule is as follows

W=UV' st [UZV] =SVW((T’X) GF) ®)

where ¥ = (0j;), U, and V are respectively the singular values, the
left and right singular vectors of the matrix (T?X) T GF.

To prove this, fixing F and G in (6) leads to the following gener-
alized Procrustes problem

min [TPX-GFWT ||? st. W'W=IL. (9
As ||TPX -GFWT |2 = ||T?X||?+||GFW T | |2 - 2Tr(WFT GTTPX).
and since [|GFW T ||2 = ||GF||? (9) is equivalent to

max Tr(WF'G'TPX) st W'W=I.

By taking [U, X, V] = SVD(FTGTT?X), we have
Tr(WF'G'TX) = Tr(WUZV')
f

= Z oii < wiU, v >
i=1

f f
< Zla,-iuw,fun xIIvill = Z;oﬁ =Tr(%).
1= i=

This implies that an upper bound for (9) is attained when
Tr(WUXVT) = Tr(X) or equivalently when VIWU = I mean-
ing that the maximum is attained at W = VUT [.

Update Rule for G. By fixing F and W and solving for F, we
get a problem that can be optimized with the assignment step of
the k-means algorithm. The update rule is, then, given as

1 if j* = argmin || (TPXW); — f; ||
gij* J (10)
0 otherwise.

4.2 The GCC Algorithm

The steps in the GCC algorithm are outlined in Algorithm 1. The
convergence of GCC is guaranteed, but it will only reach a local
optimum according to the initial conditions. A possible strategy to
overcome this is to run GCC several times and to select the best result
relative to the objective function. The selection of the propagation
order p is integral to the overall performance of the algorithm. A
smaller p can mean insufficient neighborhood information is being
propagated while a larger p can cause over-smoothing of the graph
signal. Figure 3 shows projections of the Cora dataset using the
t-SNE algorithm [39] for different values of p (with a perplexity of
50).

With AGC in [48], the authors proposed to first select an interval
of possible values for p and then retain the first p that is a local
minimum of an intra-cluster metric. Since our loss function contains
information about the clustering performance, it can serve as a
metric for the selection of p. Thus, similarly to AGC, we select the
p via our loss function as follows: We stop and select p = p* if the
change in square-root of the loss function || TPX~GFW ' || between

Algorithm 1: GCC
Input

: - Adjacency matrix A
- Feature matrix X
- Propagation order p
- Number of clusters k
- Embedding dimension f
- Tolerance €
- Maximum number of iterations max_iter
Output: - Membership indicator G € {0, 1}k
- Embedded centers F € RF¥f
- Embedding matrix W € RS
Compute T from A;
Initialize W with a randomized PCA on T?X;
Initialize G with a k-means on T?XW;
while H TPX - GFWT || > € or max_iter not reached do
Update F using formula (7);
Update W using formula (8);
Update G using formula (10);
end

' ©

p=5
o,
v

s :@@wﬁ

Figure 3: Visualization of the Cora GCC-embeddings using
t-SNE for different values of p.

p* and p* — 1is less than % for p € {0, ...,150}. The detailed rule
is described in Algorithm 2.

As our loss function w.r.t p is always decreasing for every dataset
in the interval we chose. We stop when the change in the loss is
lower than a constant that is a function of the input dimensions
rather than wait for a local minimum.

4.3 Complexity Analysis

In what follows, we analyze the computational complexity of each
operation in the GCC algorithm as well as the overall one.
Computing agg(A, X). The computational complexity of the
p-th order simple graph convolution is O(p|E|d) as each multipli-
cation costs |E|d and p such multiplications are needed.
Initializing W and G. Initializing W with PCA costs O (nd log(k))
operations as claimed in [16]. For G, computing T’ XW takes O (ndf)



Algorithm 2: Propagation order selection rule

Input : - Adjacency matrix A
- Feature matrix X
- Number of clusters k
- Embedding dimension f
Output: Propagation order p*
for p € {2,...,100} do
G, FW «— GCC(A, X, p, k, f);
lossp «— || TPX - GFWT |
if | lossp — lossp—1 | < % then
| prep-1
end

>

end

while k-means applied on TPXW is in O(tnkf) where ¢ is the
number of iterations of k-means; ergo, the overall complexity of
initialization is O (nd log(k) + ndf + tnkf).

Updating F. In (7), the cost of computing the embeddings matrix
TPXW is O(ndyf).

Since G is an indicator matrix, it can be stored as a vector
rather than a matrix and multiplications that include it can be
replaced by indexing operations. Thus, computing the transforma-
tion (GTG)"!G" takes O(n+k) and applying it on the embeddings
TPXW costs O(nf). Since n > k, the total complexity of the update
of F is then O(ndf).

Updating W. In (8), computing (T?X) T GF for the SVD costs
O(ndf) because of G being indices. The SVD operation itself costs
O(df?). As for calculating VUT, it is also in O(df?). This brings
us to a total of O(ndf + df?) operations.

Updating G. T’XW having already being computed, in (10) the
complexity of computing G comes from searching each embedded
vector’s closest centroid, this takes O(nkf).

Loss computation. Is in O(dkf +nd) or O(ndf) depending on
the order of the multiplication and the indexing operation in the
product GFWT.

Overall complexity. The totality of the previous operations
cost O(p|E|d+(t' +t)nkf+t'(ndf +df?+dkf) +ndlog(k)) where
t’ is the number of iterations of our algorithm (generally converges
within 5-15 iteration).

For simplicity’s sake we assume ¢’ = t, we can also assume that
k, f < min(n, d), which is often the case in graph datasets (this
condition can always be satisfied by adding duplicate nodes or con-
stant features), this allows us to set f = k. Consequently, the total
complexity is given as O(p|E|d + tndk).

In comparison, computing T?X and applying a k-means on it
takes O(p|E|d+tndk), the same as our method. In practice, however,
our algorithm is significantly faster than the k-means algorithm as
its most theoretically heavy computations are matrix multiplica-
tions which can be efficiently performed on GPUs.

5 EXPERIMENTS

To evaluate our proposed model, we conduct experiments on four
datasets and compare it against a number of state-of-the-art ap-
proaches for the node clustering task.

5.1 Datasets

We evaluate GCC on four widely-used attributed network datasets
(Cora, Citeseer, Pubmed and Wiki). The nodes in Cora and Citeseer
are associated with binary word vectors, while the ones in Pubmed
and Wiki with tf-idf weighted word vectors. The summary statistics
of the datasets are shown in table 1.

Table 1: Dataset statistics.

Dataset #Nodes #Edges #Features #Classes
CiteSeer [36] 3327 4732 3703 6
Cora [36] 2708 5429 1433 7
PubMed [36] 19717 44338 500 3
Wiki [45] 2405 17981 4973 17

5.2 A Fair Comparison with Baseline Methods

In our work we focus on clustering and related methods. Below we
look at how our GCC algorithm performs in comparison with state-
of-the art unsupervised methods. Approaches that use information
from the actual labels, be it supervised or semi-supervised, are not
considered such as [40]. The baseline methods are categorized as
follows:

(1) Methods that use node-level features only. Spherical k-
means [18] is k-means applied on data projected on the unit
sphere. It will serve as the node features clustering baseline
along with DCN [44].

(2) Methods that use graph structure only. Spectral is the
spectral clustering algorithm with the normalized Laplacian
as the input similarity matrix.

(3) Methods that use both. LVAE [33] is the linear graph vari-
ational autoencoder and LAE is its non-probabilistic version.
GIC [27], AGE [8] proposes a Laplacian smoothing filter that
acts as a low-pass filter applied in adaptive learning scheme.
S*GC proposes a new method for the aggregation of K-hop
neighborhoods that is a trade-off of low- and high-pass filter
bands, it then applies spectral clustering on the output of
that operation.

In the experiments we use the implementations that are publicly
available on Github repositories of the authors.

5.3 Experimental Settings

To evaluate the clustering results, we employ three performance
metrics: clustering Accuracy (Acc), Normalized Mutual Information
(NMI) and clustering macro F1-score (F1). Larger values imply better
performance. We report the mean values of the three metrics for
each algorithm over 20 executions except for AGE which we average
over three runs because of high execution time.

For our model, we set the embedding dimension f = k for each
dataset. The propagation parameter p is selected via the heuristic
rule described prior; we obtain p = 5 for citeseer, p = 12 for Cora,
p = 150 for Pubmed and p = 4 for Wiki. We row normalize the
feature vectors and use tf-idf normalization on the binary word
vectors of Citeseer and Cora so that all dataset are in tf-idf.

For other methods, we employ the parameters recommended
by the authors for every dataset, For S°\GC we expand the possible



Table 2: Clustering performance on four datasets averaged over 20 runs. AGE was averaged over 3 runs. AGE, LAE and LVAE

failed to scale to Pubmed; OOM denotes out of memory.

Method Input Citeseer Cora Pubmed Wiki

Acc F1 NMI Acc F1 NMI Acc F1 NMI Acc F1 NMI
Sph. k-means X 42.64 40.16 1991 | 3397 3093 1533 | 59.51 58.16 31.26 | 33.65 23.30 29.90
DCN X 19.16 11.44 291 20.01 11.81 2.32 15.87 7.06 4.07 4428 17.14 1245
Spectral A 21.60  9.46 1.54 | 30.00 8.78 236 | 5896 4353 18.30 | 23.20 13.74 18.05
LAE (2020) (A,X) | 43.49 4133 22.66 | 6543 66.21 48.89 OOM 4526  40.90 45.99
LVAE (2020) (A,X) | 39.46 38.26 20.53 | 64.11 65.31 48.47 OOM 47.38 4292 47.79
AGE (2020) (A,X) | 57.85 55.01 35.74 | 69.17 67.30 56.91 OOM 53.79 4139 52.63
GIC (2021) (A,X) | 68.78 64.02 43.82 | 70.45 68.95 52.55 | 6430 64.86 26.02 | 46.46 40.29 48.24
S2GC (2021) (A,X) | 68.13 63.79 42.26 | 69.68 6641 54.83 | 70.81 69.96 32.32 | 52.71 44.40 48.96
GCC (ours) (A,X) | 69.45 64.54 45.13 | 74.29 70.35 59.17 | 70.82 69.89 3230 | 54.56 46.10 54.61

Table 3: Wall-clock time in seconds for different methods on
the four datasets averaged over 20 runs (3 runs for AGE).

Method ‘ CiteSeer Cora Pubmed Wiki
Sph. k-means 18.1 3.2 8.3 20.2
LAE 12.3 8.9 OOM 27.3
LVAE 11.9 6.3 OOM 29.3
AGE 2461 936.3 OOM 3058.7
GIC 8.4 5.7 13.9 8.3
S’GC 7.7 1.0 24.8 6.1
GCC 2.5 1.0 11.8 2.9
propagation order to {1, ..., 150}, the same as GCC for a fair com-

parison. All models were run on the same machine with a 12GB
memory GPU an a RAM of 12GB. Note that we could not run AGE,
LAE and LVAE on Pubmed due to out of memory (OOM) issues.

5.4 Clustering Results

Clustering performances of the different methods are reported
in table 2. Best performances are shown in bold. It is clear that
the methods that use both A and X perform significantly better
than those that use either of them individually. We see how GCC
outperforms other attributed graph clustering methods in terms of
accuracy, F1 and NMI except for Pubmed where S*GC and GCC are
comparable. The algorithm is also stable as its standard deviation
on the accuracy is 0.13 on Citeseer, 0.02 on Cora, 0.00 on Pubmed,
and 1.58 on Wiki.

We also report the average running time of each algorithm in
table 3. Notice how the running times of our algorithm are the
lowest on the four datasets when compared to the stare-of-the-art
especially when comparing with the AGE algorithm. We mentioned
earlier how algorithm has a similar theoretical complexity to that
of k-means. We can see here that in practice our algorithm is faster
on most datasets due to the fact that it can be efficiently run on a
GPU.

5.5 Embedding and Visualization

The GCC model offers the ability to display the cluster-based struc-
ture inherent to multivariate data. Figure 4 presents the lower-
dimensional representations produced by our model projected on

a 2-d space by t-SNE (with a perplexity of 50). We can see a clear
difference in the structures of the projections of the raw data and

those of the generated embeddings. To further judge the quality
_Tr(Sp)

CT(S)?
where S, is the between-class scatter matrix and S; is the total

scatter matrix. We report this measure in Figure 4 on the true labels
plots to quantify separability. The R-squared is larger for 2-d pro-
jections of the GCC embeddings on all four datasets. On Pubmed,
the structure is less pronounced (0.47 vs 0.53) but we can still see
the formation of three clusters.

This shows how our model can be efficiently used for data vi-
sualization to generate more interpretable embeddings or for a
dimensionality reduction step before feeding the output represen-
tations to more complex clustering algorithms down the line. Note
also that such visualisations can help the user in assessing the
number of clusters.

of the embedding, we use the R-squared measure, i.e., R?

5.6 Choice of Propagation Matrix

We conduct experiments to further motivate our choice of prop-
agation matrix. We compare the following propagation matrices:
i) Augmented symmetric norm. Agym = D~1/2AD"12 i) Aug-
mented random walk norm. Ay = DA, iii ) Our norm. Agyrs =
T =Dy !(1+D /2AD"1/2). We do an analysis on the clustering
accuracy of our model with these normalizations for propagation
orders p € {1,..,20}. These results are averaged over 20 runs and
the same parameters are used for all normalizations.

We see in figure 5 how our proposed propagation matrix of-
fers the maximum accuracy on three out of the four datasets (Arw
slightly outperforms it on Pubmed). We also see that it is more
stable and well-behaved compared to the other two on all four
datasets. The symmetric normalization especially is prone to large
changes even for consecutive propagation orders. These results can
be explained by the fact that the GCN when using the symmetric
and random walk normalizations is not strictly low-pass. Figure
6 shows the frequency response functions for the GCN with the
three propagation matrices for propagation order p € {1, 2,3}. We
see how the absolute value of the frequency response function is
not always decreasing w.r.t the frequencies for Ay and Agyn as
opposed to Aours-
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Figure 4: Left column: t-SNE projection of the original features colored according to the real labels. Middle column: t-SNE
projection of the GCC embeddings colored according to the real labels. right column: t-SNE projection of the GCC embeddings
colored according to the predicted labels. R-squared is used to measure of class separability for real classes (left and middle

column), e.g., 0.49 vs 0.85 for Citeseer.
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Figure 5: Accuracy with GCC using different propagation matrices averaged over 20 runs
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Figure 6: Frequency response plotted against the frequency
for different propagation matrices on Cora. Left column: fre-
quency response is 1 —A. Middle column: frequency response
is (1 — 1)%. Right column: frequency response is (1 — 1)°.

6 CONCLUSION

In this paper, we harnessed the simple formulation of the graph
convolutional network to obtain an efficient model that addresses
both node embedding and clustering in a unified framework. First,
we provided a normalization that makes the GCN encoder act as a
low pass filter in the strict sense. Secondly, we proposed a novel
approach where the objective function to be optimized leverages
information from both the GCN embedding reconstruction loss
and the cluster structure of these embeddings. Thirdly, we derived
GCC whose complexity has been rigorously studied. In doing so, we
showed how GCC achieves better performances compared to other
graph clustering algorithms in a more efficient manner. Note that all
the compared methods are unsupervised in nature in order to have
a fair comparison with our model. Our experiments demonstrated
the interest of our approach. We also showed how GCC is related
to other methods including some GCN variants.

The proposed model is flexible model and can be extended in
several directions, thus opening up opportunities for future research.
For instance, in our approach we have assumed that the a coefficient
which regulates the trade-off between seeking reconstruction and
clustering is equal to one, it would be interesting to investigate the
choice of this value. On the other hand, while our focus in this work
is clustering, it would be worthwhile to extend the problem, e.g.,
to co-clustering, which is a useful in a wide range of real-world
scenarios like document clustering.
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